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A B S T R A C T

Chlorophyll is crucial for photosynthesis and impacts plant growth and yield in crops. Accurate estimation of 
plant health and fertilizer status is essential for effective nitrogen (N) management in corn. However, crop 
chlorophyll is primarily quantified using handheld sensors, which is time-consuming, labor-intensive, and of low 
spatial resolution. This study aimed to evaluate an airborne multispectral imaging system in estimating the 
chlorophyll content of corn leaves at four vegetative growth stages. Three replicates of 12 nitrogen rates (be
tween 0 and 285 kg ha− 1) were applied to corn at the V4 vegetative stage (i.e., with four established leaves). Soil 
apparent electrical conductivity (ECa) of all test plots was measured before planting and corn leaf chlorophyll 
content was measured using a commercial handheld chlorophyll meter at four vegetative stages (V8, V9, V11, 
and V12). A UAV-based multispectral camera collected imagery at the same time as manual readings. Machine 
learning models developed based on image features derived from UAV images were used to predict leaf chlo
rophyll content. Results showed that an epsilon support vector regression model built on imagery data across 
imagery data collected over four growth stages with a sequential forward feature selection achieved the best 
performance (R² = 0.87, MAE = 1.80, and RMSE = 2.26 SPAD units). There was no significant difference in the 
performance of models across the four growth stages. By utilizing the developed model, researchers and growers 
can effectively map the chlorophyll content of corn leaves at different growth stages, enabling them to make 
timely and informed management decisions.

1. Introduction

Chlorophyll content in corn (Zea mays L.) is crucial for efficient 
photosynthesis and serves as an indicator of overall plant health [1]. 
However, the leaf chlorophyll content can decrease due to disease [2], 
water stress [3], nutrient deficiencies [4], and unfavorable weather 
conditions [5]. Therefore, monitoring leaf chlorophyll content is 
important for timely and accurate field management to maintain plant 
health. Conventional techniques for quantifying leaf chlorophyll levels 
involve wet chemistry analysis in a lab, where chlorophyll is extracted 
using solvents and then measured with a spectrophotometer [6]. How
ever, this method is time-consuming and expensive, making it imprac
tical for quick assessment in the field. Alternatively, handheld optical 
sensors can be used for non-destructive measurements. These sensors, 
such as the SPAD-502 chlorophyll meter (Minolta Digital, Osaka, Japan) 
(SPAD hereafter), use a two-band spectral sensor (650 & 940 nm) to 

estimate chlorophyll content [7]. This method has been widely used in 
agricultural research to measure the level of chlorophyll in leaves, 
monitor plant nutrition status, and create N management recommen
dations [8,9]. However, the data collection procedure using chlorophyll 
meters is labor intensive, lacks spatial resolution, and is not suitable for 
large-scale applications.

Remote sensing technology using satellites, airplanes, or unmanned 
aerial vehicles (UAV) equipped with optical sensors allows for high- 
throughput data collection on a large scale to measure the biophysical 
characteristics of crops [10]. UAV-based remote sensing has become 
increasingly popular in precision agriculture due to its flexibility, high 
efficiency, and desirable spatial resolution [11]. Optical sensors (cam
eras) mounted on the UAVs are used to capture spectral reflectance in
formation of plant leaves and canopy [12]. Cameras commonly used on 
UAVs for agriculture include red-green-blue (RGB), multispectral (3 - 10 
spectral bands), hyperspectral (hundreds of bands) and thermal 

* Corresponding author.
E-mail address: zhoujianf@missouri.edu (J. Zhou). 

Contents lists available at ScienceDirect

Smart Agricultural Technology

journal homepage: www.journals.elsevier.com/smart-agricultural-technology

https://doi.org/10.1016/j.atech.2024.100719
Received 13 October 2024; Received in revised form 11 December 2024; Accepted 14 December 2024  

Smart Agricultural Technology 10 (2025) 100719 

Available online 15 December 2024 
2772-3755/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0000-0002-7127-1428
https://orcid.org/0000-0002-7127-1428
https://orcid.org/0000-0002-1268-7247
https://orcid.org/0000-0002-1268-7247
https://orcid.org/0000-0002-9094-427X
https://orcid.org/0000-0002-9094-427X
mailto:zhoujianf@missouri.edu
www.sciencedirect.com/science/journal/27723755
https://www.journals.elsevier.com/smart-agricultural-technology
https://doi.org/10.1016/j.atech.2024.100719
https://doi.org/10.1016/j.atech.2024.100719
http://creativecommons.org/licenses/by/4.0/


cameras. RGB cameras are low-cost and high-resolution, often used to 
assess the morphological and visible color characteristics of crops, such 
as plant height [13,14], canopy size [15,10], stand count [16,17], and 
the level of greenness [18,19]. Multispectral and hyperspectral cameras 
can capture the reflectance spectrum of visible and near-infrared (VNIR) 
and shortwave infrared (SWIR), which enables them to detect more 
subtle changes in plant health or biochemical processes, such as water 
stress [7,10], nutrient content [20,21], herbicide damage [22,23], and 
seed protein [24,10].

UAV-based multispectral cameras have been used to estimate leaf 
chlorophyll content in various crops, including corn [25], sugarcane 
[26], and wheat [27]. Previous studies have explored different spectral 
vegetation indices, machine learning algorithms, and image 
pre-processing methods to estimate leaf chlorophyll content. For 
example, removing image backgrounds, including shadows and soil 
from the region of interest (ROI), can improve the accuracy of SPAD 
readings estimation [28]. Integrating environmental factors into imag
ery data could statistically improve the performance of regression 
models in estimating SPAD readings [29]. Moreover, Guo et al. [30] 
concluded that the support vector machine (SVM) outperformed the 
random forest regression (RF) under the circumstance of limited samples 
of leaf SPAD readings. Qiao et al. [31] indicated that vegetation indices 
(VIs) obtained from aerial imagery showed a linear correlation with leaf 
chlorophyll content at low and medium canopy coverage but a 
non-linear correlation at high canopy coverage.

Despite the feasibility of estimating corn leaf chlorophyll levels, 
many studies have focused on only a single time point, usually during 
the reproductive stages. (i.e., tasseling or silking). However, this limits 
the ability to detect early season stress. Tracking the spatial-temporal 
patterns of chlorophyll estimates allows farmers to identify emerging 

issues and take timely actions to protect against yield loss. Models that 
can estimate leaf chlorophyll content at any growth stage would be more 
practical for agricultural production. Additionally, researchers often 
rely on the mean value to represent the whole dataset, which can 
introduce bias and overlook important information, resulting in poor 
performance of machine learning models. Therefore, it is necessary to 
develop models to estimate leaf chlorophyll content at multiple growth 
stages using additional data descriptive methods (i.e., other than mean 
values).

This study aimed to investigate the feasibility of using an aerial 
multispectral imaging system to estimate the leaf chlorophyll content of 
corn across multiple vegetation stages. The two primary objectives were: 
(1) to identify suitable machine learning methods in estimating corn leaf 
chlorophyll content at different vegetative growth stages, and (2) to 
assess the performance of different statistical values on the model per
formance. These objectives aimed to provide a basis for monitoring the 
dynamic growth of corn using aerial multispectral imagery to support 
field management strategies.

2. Materials and methods

2.1. Field experiment

This study was conducted on a 0.2 hectare subfield of a 14 hectare 
corn field near Columbia, MO, USA (38◦56′45.7″N, 92◦07′59.4″W). The 
research field is in the humid continental region with four distinct sea
sons and at an elevation of approximately 232 m above mean sea level. 
The dimensions of the study area are 115 m (N - S direction) in length by 
60 m in width. Corn was planted using a four-row planter equipped with 
John Deere MaxEmerge XP row units (Deere & Co., IL, USA) at a seeding 

Fig. 1. Overview of the field experimental design using an N rate ramp approach. note: Numerical values (1 - 12) represent nitrogen application rates.
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rate of 81,510 seeds ha− 1 with a 0.76-meter row spacing. The experi
ment involved three replications of 12 incremental nitrogen rates 
ranging from 0 kg ha− 1 to 285 kg ha− 1 (i.e., 0, 67, 134, 151, 168, 185, 
202, 219, 235, 252, 269, and 285 kg ha− 1). All plots were designed with 
a plot size of 7.6 m × 6.1 m, except for the plots with treatments of 0, 67, 
and 134 kg ha− 1 (Fig. 1), which had a larger size of 15.2 m × 6.1 m due 
to the higher N rate increase between these plots. Nitrogen treatments 
were SuperU (46–0-0) that was broadcast applied at V4 as described in 
Abendroth et al. [32].

2.2. Data collection

The ground truth of leaf chlorophyll content was collected at four 
different vegetative growth stages at V8, V9, V11, and V12 (Vn indicates 
the growth stage when the nth leaf collar is present, Abendroth et al. 
[32]) from June to July 2021 (Table 1). Leaf nitrogen content was 
determined using a SPAD-502 chlorophyll meter. The average SPAD 
value for each plot was determined by taking five to six measurements 
from five randomly chosen plants in the middle two rows. Measurements 
were taken on the most recently collared leaf, between 1/3 and 2/3 of 
the length of the leaf from the central vein to the edge of the leaf. Data 
were collected from nitrogen treatments of 0, 67, 134, 168, 202, 235, 
and 286 kg ha− 1 nitrogen rates in all three replications during all data 
collection events.

Soil apparent electrical conductivity (ECa) was collected using a 
Veris 3100 instrument (Veris Technologies, Salina, KS, USA). Approxi
mately 266 ECa measurements, including shallow ECa (0 - 30 cm) and 
deep ECa (0 - 100 cm), were collected in the study area, which were used 
as indirect indicators of soil texture and quality [33]. To improve spatial 
accuracy in imaging processing, a real-time kinematic (RTK) GNSS 
system Reach RS+ (EMLID Ltd., Budapest, Hungary) was used to obtain 
the coordinates of the edge of each plot (four corners) and the ground 
control points at the edge of the field.

Imagery data were acquired using a UAV platform (Matrice 600 Pro, 
DJI Technology, Guangdong, China) equipped with a multispectral 
camera (RedEdge-M, AgEagle Aerial Systems, Wichita, KS, USA). The 
camera consists of five spectral narrow bands, i.e., Red (R) at 668 nm ±
10 nm, Green (G) at 560 nm ± 20 nm, Blue (B) at 475 nm ± 20 nm, Red 
Edge (RE) at 717 nm ± 10 nm, and Near Infrared (NIR) at 840 nm ± 40 
nm. The camera captures images at a resolution of 1260 × 960 pixels. A 
flight planning app Autopilot (Hangar Technology, TX, USA) on an iPad 
Mini 4 (Apple, CA, USA) was used to set the flight path and configure 
flight parameters (i.e., frame rate, speed, altitude). The UAV flight paths 
ensured a sufficient image overlap (≥ 70%) for orthomosaic images. The 
ground sampling distance (GSD) was set to 1.7 cm per pixel for all the 
flights. Prior to each flight, an image of a manufacturer-provided cali
bration reflectance panel was captured by holding the camera at 
approximately 1.0 m above the panel to avoid any shadow. All data 
collection events were conducted between 10 am to 2 pm, coinciding 
with minimum variations in the solar zenith angle.

2.3. Image processing and feature extraction

All UAV images were processed using Pix4D (Pix4D, Lausanne, 
Switzerland) to stitch UAV collected images and build orthomosaic 
images of the study area. All orthomosaic images were exported in “tiff” 
(Tag Image File Format) format and segmented using the geographic 

information system software QGIS (version 3.28.2). The coordinate 
reference system was set as WGS 84 / UTM zone 15 N (EPSG: 32,615) to 
avoid the imaging raster distortion. Using the coordinates of the plot 
corners, a polygon file was generated and then rescaled to focus on the 
central area of each plot, avoiding boundaries. The rescaled polygons 
were used to isolate the corresponding plot areas from each orthomosaic 
image. The resulting images of individual plots were saved with file 
names that included the plot ID and growth stage.

The background information of segmented images (e.g., soil and 
shadows) was removed using the Otsu method [34] based on the excess 
greenness (ExG) index, which is calculated using Eq. 1. 

ExG = 2 × Green − Red − Blue (1) 

where, Green, Red and Blue are the pixel values of the three channels of 
an RGB image. The Otsu + ExG method has been applied in other studies 
to eliminate background information surrounding the crop in different 
agricultural scenarios [35,36].

Vegetative indices and other image features calculated from the 
processed multispectral images are listed in Table 2. They have been 
widely used in other research to quantify the physiological and chemical 
characteristics of crops [26,31,37].

When reducing the dimensionality of vegetation indices data from 
multispectral imagery (i.e., from 2D to 1D), previous studies commonly 
use the mean value for each ROI as an independent variable. However, 
solely depending on mean values can cause a significant loss of infor
mation. In this study, multiple summary statistics were selected, 
including 25, 50, and 75 percentiles (Q1, Q2, and Q3), Mean, Standard 
Deviation, Total Absolute Difference, Interquartile Range, Upper Inner 
Fence, and Lower Inner Fence, which are described in Table 3. They 

Table 1 
Field collection event dates and corresponding vegetative growth stage.

Growth Stage (Date) Aerial Data Collection Ground Data Collection

V8 (06/18) ✓ ✓
V9 (06/25) ✓ ✓
V11 (07/02) ✓ ✓
V12 (07/08) ✓ ✓

Table 2 
Equations of the extracted image features from multispectral imagery.

Extracted 
image feature

Equation* Reference

NDVI (NIR − R) / (NIR + R) Carlson and 
Ripley [38]

GNDVI (NIR − G) / (NIR + G) Shanahan et al. 
[39]

NDRE (NIR − RE) / (NIR + RE) Li et al. [40]
CCCI NDRE / NDVI El-Shikha et al. 

[41]
CI_Green (NIR / G) − 1 Viña et al. [42]
CI_Red_Edge (NIR / RE) − 1 Viña et al. [42]
MSR [(NIR / R) - 1]/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(NIR / R) + 1

√ Salas and 
Henebry [43]

RDVI (NIR - R) /
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
NIR + R

√ Chen [44]
RVI NIR / R Gupta et al. 

[45]
EVI 2.5 × ((NIR − R) / (NIR + 6 × R − 7.5 × B +

1))
Matsushita 
et al. [46]

TVI ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(NIR − R) / (NIR + R) + 0.5

√ Bannari et al. 
[47]

IPVI NIR / (NIR + R) Payero et al. 
[48]

MTCI (NIR - RE) / (RE - R) Dash and 
Curran [49]

BNDVI (NIR − B) / (NIR + B) Wang et al. 
[50]

WDRVI (α × NIR - R) / (α ×NIR + R); α = 0.2 Gitelson [51]
TCARI 3 × [(RE - R) - 0.2 × (RE - G) × (RE / R)] L. Zhang et al. 

[7]
ExG 2 × G - R - B Meyer and 

Neto [52]
GLI [(G - R) + (G - B)] / [(2 × G) + R + B] Barbosa et al. 

[53]
RMS Contrast Population standard deviation of the grayed 

plot image
Kukkonen 
et al. [54]

Canopy 
Coverage 
(CC)

Pixel number of the canopy in the ROI / Total 
pixel number in the ROI

Walton et al. 
[55]

* R = red; G = green; B = blue; RE = red edge; NIR = near infrared.
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were all derived from the ROIs in each raster dataset to capture as much 
information as possible. All image data analyses were performed in 
RStudio (Ver. Posit, MA, USA).

2.4. Dimensionality reduction algorithms

The dataset from Section 2.3 includes 182 independent variables and 
one dependent variable, which may lead to multicollinearity, noise, and 
redundancy, and negatively impact the accuracy of the predicted results 
[56]. The dimensionality of the dataset in this study was reduced by the 
Sequential Forward Selection method, which decreases the dimension
ality of the feature space by selecting the most relevant features [57]. 
However, traditional Sequential Forward Selection methods (e.g., For
ward / Backward Stepwise Regression) have an overfitting issue, espe
cially for a small dataset [58]. Therefore, the Sequential Cross-Validated 
Forward Selection (SCVFS) method, based on the theory of Sequential 
Forward Selection, was used to reduce the dimensionality of the dataset 
[59]. The steps of SCVFS are illustrated in Fig. 2, including: 

(1) Initialize the machine learning model with pre-defined hyper- 
parameters and create empty lists (Xopt & Error Record) to store 
selected variables and modeling performance on testing dataset.

(2) For each variable Xi that does not exist in Xopt , fit the model on the 
training dataset using Xi, recursively, combined with previously 
selected variables in Xopt . Use Monte Carlo Cross-Validation 
(MCCV), resampling the training and testing data 100 times, to 
evaluate the performance of machine learning model on the 
testing dataset. Record the average Root Mean Squared Error 
(RMSE) for each Xi.

(3) After evaluating all variables, select the Xi with the lowest 
average RMSE and add it to Xopt . Repeat this process again, 
adding one Xi per round until n − 1 rounds are completed (where 
n is the total number of independent variables).

2.5. Chlorophyll content prediction models

This study evaluated four regression models used extensively in 
various remote sensing applications to predict leaf chlorophyll content 
in corn [60,61]. The selected models included Epsilon–Support Vector 
Regression (ε-SVR), Elastic–Net Regularization Regression (Elastic-Net), 
Partial Least Squares Regression (PLSR), and Random Forest Regression 
(RF).

The ε-SVR model uses a kernel function to map input data into a 
high-dimensional feature space. It finds a hyperplane that minimizes the 
deviation between the actual and prediction values, subject to a toler
ance defined by ε. ε defines a margin of tolerance where no penalty is 
given to training errors. This approach helps the model generalize well, 
even when working with small datasets, without being overly sensitive 
to minor variations [62]. The SCVFS-ε-SVR model uses the SCVFS 
method described in Section 2.4 to select variables that are then entered 
into the ε-SVR for fitting. The ε-SVR was built using the function “ksvm 
()” in the R package “kernlab”. The hyper-parameters selected as listed as 
kernel = “vanilladot” (Linear Kernel), C = 0.1 (Lagrange Regularization), 
epsilon = 0.2 (Insensitive Loss), and all other settings set to default.

Elastic-Net is a statistical model that combines the L1 (Lasso) and L2 
(Ridge) regularization methods. It can avoid multicollinearity by setting 

Table 3 
Methods for extracting statistically descriptive features from the raster data.

Summary Statistics of Each 
Feature

Definition

Q1 The first quartile (25th percentile) of the data
Q2 The median (50th percentile) of the data
Q3 The third quartile (75th percentile) of the data
Mean The arithmetic average of the data
Population Standard Deviation A measure of the spread of the data
Total Absolute Difference The sum of the absolute differences between each 

data point
Interquartile Range The difference between Q3 and Q1
Upper Inner Fence The upper boundary for identifying potential 

outliers
Lower Inner Fence The lower boundary for identifying potential 

outliers

Fig. 2. Example code for SCVFS.
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the coefficient of each independent variable extremely low or to zero, 
thereby minimizing the effect of the variables in the model. This makes 
the modeling process more efficient as it does not require additional 
dimensionality reduction methods. In this study, the model was built 
using the function “cv.glmnet()” from the R package “glmnet” by speci
fying the hyper-parameter alpha = 0.6 and parameter family =

“Gaussian” with all other settings kept as default. The best shrinkage 
parameter (λ) was selected through a 5-fold cross-validation on the 
training dataset, choosing the λ value based on the lowest average 
training error. Partial Least Squares Regression is another commonly 
used multivariate statistical method for predictive modeling. It can also 
handle multicollinearity and is suitable for small datasets [63]. Unlike 
the PCA, the PLSR algorithm considers independent and dependent 
variables to derive latent variables that are most relevant to the 
dependent variable. The ’plsr()’ function from the ’pls’ R package was 
used to apply the model, with seven latent variables selected based on 
Leave-One-Out Cross-Validation (LOOCV) during the training process.

Random Forest is a classic ensemble learning algorithm that captures 
non-linear relationships between independent and dependent variables. 
It constructs multiple (hundreds or even thousands) decision trees on 
bootstrapped samples of the training data, randomly selecting subsets of 
independent variables during node splitting. This improves the model’s 
robustness and helps avoid overfitting. The “randomForest()” function 
from the “randomForest” R package was used to build the RF model, with 
ntree = 500, mtry = 12, and nodesize = 2 and all other settings were kept 
as default.

All training data was standardized following the Gaussian distribu
tion (μ = 0 & σ = 1), and the testing data were adjusted using the same 
scaling parameters from the training dataset. The optimal hyper
parameters for each model were determined by selecting the lowest 
average RMSE on the testing dataset through a grid search with 100 
MCCV. Three evaluation metrics were used to assess the model perfor
mance on various datasets, including coefficient of determination (R2), 
Mean Absolute Error (MAE), and RMSE, as calculated in Eqs. 2-4. 

R2 = 1 −

∑
i(yi − ŷ i)

2

∑
i(yi − y)2 (2) 

MAE =

∑n
i=1|yi − ŷ i|

n
(3) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(ŷ i − yi)
2

n

√

(4) 

where, n denotes sample size; yi indicates the true value; ŷ i means the 
predicted value; y is the mean of the true values.

2.6. Kriging interpolation

This study used Ordinary Kriging with the “smartmap” plugin in 
QGIS to estimate the shallow ECa and deep ECa values. A linear semi- 
variogram model was fitted to the experimental semi-variogram 
values obtained from the original dataset, resulting in an R2 of 0.976, 
indicating a good explanation of the spatial data variability. The pa
rameters “Neighbors = 10″ and “Radius = 39.048″ were chosen based on a 
preliminary trail to create a smoother interpolation map. The same 
polygon shapefile used to segment the plots from the orthomosaic image 
was also used to segment the interpolated ECa data. The data was 
extracted using the same summary statistics (Table 3) to convert it from 
2-dimensional to 1-dimensional data.

2.7. Statistical analysis

The study used the Pearson correlation coefficient (r) to assess the 
similarity between two polynomial regression models. These models 
were developed based on SPAD readings for each growth stage. The first 

model used values only from plots with ground truth data, while the 
second model included data from all plots, including both ground truth 
and predicted values from the selected machine learning model. To 
simulate nitrogen application rates, 286 structured sequences ranging 
from 0 to 285 kg N ha− 1 in 1 kg N ha− 1 increments. These sequences 
were then fitted to both models to generate predicted leaf chlorophyll 
content. The r was generated between the predicted values from the first 
and the second polynomial regression models.

3. Results and discussion

3.1. Descriptive statistics of ground truth data

The descriptive statistics of measured leaf chlorophyll content from 
the SPAD meter are shown in Fig. 3a, indicating that the SPAD readings 
were between 32.9 and 59.2 with the median value of 51.3 and a 
standard deviation of 6.0 SPAD units. The histogram shows a bimodal 
distribution peaking at around 48 and 56. The point plot in Fig. 3b shows 
the distribution of SPAD readings for the four growth stages. The trend 
of each growth stage in different nitrogen rates was shown using the 
polynomial regression (degree = 2). Growth stage V12 indicates that the 
SPAD readings are lower at higher nitrogen rates, however, this phe
nomenon is not obvious in earlier vegetation stages. In addition, V12 has 
relatively low SPAD readings compared to other growth stages across all 
treatments. This phenomenon has also been observed in other studies 
where corn leaf chlorophyll has lower SPAD readings in the late vege
tative stages [64].

3.2. Model performance on leaf chlorophyll content estimation

The performance of the selected regression models in estimating corn 
leaf chlorophyll content from SPAD readings are shown in Table 4. 
There are a total of 182 individual variables (nine statistical measures 
for 20 VIs plus Contrast) as defined in Table 2. The highest accuracy for 
the leaf chlorophyll content was achieved by the SCVFS-ε-SVR model 
with the R2 of 0.87 and MAE of 2.26 SPAD units based on the average 
value with a 100 MCCV. On the other hand, RF performs worst with the 
R2 of 0.79 and MAE of 3.19 SPAD units. RF is the only non-linear 
regression model in our experiment, which is relatively more complex 
than linear models and may require more data to fit. [65] also concluded 
that RF could perform worse especially on a small dataset in remote 
sensing tasks.

3.3. Feature selection based on SCVFS

The RMSE was calculated using 182 independent variables based on 
the model SCVFS-ε-SVR by running the ε-SVR with 100 MCCV under 
different combinations of independent variables. The RMSE response to 
the number of independent variables for training and testing datasets are 
shown in Fig. 4.

In this study, predictive modeling was initiated with a single inde
pendent variable and observed that the RMSE exceeded 6.0 SPAD units 
for both training and testing datasets. As additional variables were 
gradually introduced, the performance of the model improved signifi
cantly. When the model included more than 20 independent variables, 
its performance on the testing dataset plateaued (changes of RMSE <
0.01 SPAD units), indicating a state of diminishing returns, while 
training accuracy continued to increase. The results suggest that the 
model was overfitting by using more variables, which increased training 
time and compromised the feature space [37]. To reduce computing 
time and avoid overfitting, an early-stop mechanism was implanted in 
the forward selection process. This mechanism stops the addition of new 
variables when the model’s performance metrics (RMSE or R2) no longer 
show significant improvement.

The results visualized in Fig. 4 indicated that certain variables had a 
significant improvement in the performance of the ε-SVR. Specifically, 
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four independent variables (i.e., Q1 of the GLI, the total absolute dif
ference in shallow soil ECa, the upper inner fence of both the GNDVI and 
RDVI) were identified as the most influential with at least a 0.2 decrease 
in the RMSE on the test dataset. The GLI mainly represents vegetation 
greenness, which corresponds to chlorophyll concentration. The total 

absolute difference of shallow soil ECa also contributes significantly to 
the model’s performance as an environmental factor with a moderate 
negative linear relationship with the dependent variable (r ≈ -0.55). 
Additionally, GNDVI and RDVI, which are related to crop vigor, had an 
impact on the model’s performance. While other variables had minor 
improvements in explaining the variance observed in the SPAD readings 
on the testing dataset, their combined contribution was still significant. 
Interestingly, the SCVFS method rarely included extracted image fea
tures that were calculated as an average. Such an observation makes it 
worth comparing our method with the conventional approach of 
extracting and using only the mean value of the image feature.

3.4. Compare different feature extraction methods

The mean value of the collected imagery data has been extensively 
used to represent image or environmental features in a specified ROI for 
machine learning models. Using fewer variables during training requires 
fewer computational resources, but relying solely on the mean value 
may not capture all the trends or the dispersion in the original dataset. 
This study extracts the mean value of each VI and soil ECa with image 
contrast to fit into the model ε - SVR with the SCVFS feature selection 
method, in order to compare the results of Section 3.3. As more variables 
are added, the model’s performance steadily increases, reaching an 
RMSE of 2.81 at 11 variables on the testing dataset. However, adding too 
many variables leads to overfitting, where the model performs well on 
the training data but fails to generalize the testing data. Fig. 5 shows this 
pattern, which is similar to Fig. 4. It demonstrates that adding too many 
variables can negatively impact the model’s performance.

The mean values of GLI, RDVI, contrast, ExG, RVI, CCCI, and GNDVI 
are the top 7 variables that contribute to at least a 0.1 decrease in RMSE 
of the testing dataset. Similar to Section 3.3, GLI was selected as the most 
contributing factor in this study. However, it is important to note that 
the GLI was calculated based on the mean value in this section whereas 
the first selected variable is Q1 of GLI in Section 3.3. Besides, these 
selected VIs are mainly related to the greenness of plants (e.g., GNDVI, 
ExG, GLI) or related to NIR reflectance (RVI, RDVI, and CCCI). While the 
independent variable “contrast” also plays a significant role, potentially 
due to the variance in canopy color, which could be caused by envi
ronmental factors. Overall, this part of the study suggests that adopting 
more summary statistics to describe the matrix format image and 
environmental features could provide an additional benefit to the per
formance of machine learning models.

3.5. Goodness of fit in different vegetation stages

The performance of the model on the training dataset can help us 
understand how well it fits the collected data and how it changes across 
various corn vegetation stages. This section used the same hyper- 

Fig. 3. Description of the ground truth from growth stages v8, v9, v11, and v12 based on the treatment 1, 2, 3, 5, 7, 9, 12 for all 3 replications. (a). Distribution of all 
leaf SPAD readings. (b). Trend of SPAD readings at four growth stages fitted by Polynomial regression (degree = 2).

Table 4 
Performance of the Elastic-Net, RF, ε - SVR, SCVFS - ε - SVR, and PLSR models in 
leaf chlorophyll content estimation using nine extracted statistic measurements 
from each vegetation index. Evaluation metrics R2, MAE (SPAD value), and 
RMSE (SPAD value) were calculated based on the 100 MCCV testing dataset.

Model R2 MAE RMSE

Elastic - Net 0.82 2.06 2.63
RF 0.79 2.51 3.19
PLSR 0.81 2.14 2.76
ε - SVR 0.83 2.02 2.59
SCVFS - ε - SVR 0.87 1.80 2.26

Fig. 4. Root Mean Square Error (RMSE, SPAD value) of SPAD values (indi
cating the leaf chlorophyll content) predicted by the SCVFS-ε-SVR algorithm. 
The horizontal axis shows the number of variables used for the training (red) 
and testing (blue) phases and the vertical axis shows the RMSE values 
(SPAD values).
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parameters of the ε-SVR model and independent variables identified in 
Section 3.3. Data collected from different vegetative stages are indi
vidually fitted into the linear model.

The performance of each model is consistent across the four sub-sets 
of data collected from different dates (Table 5). The selected indepen
dent variables were able to explain 92% to 95% of the changes or 
fluctuations in the dependent variable for the model. This shows that the 
relationship between independent and dependent variables remains 
consistent across different corn growth stages. Therefore, by combining 
datasets from various periods, it might be possible to adapt the model for 
similar scenarios, assuming the external environmental conditions 
remain unchanged with those of the periods covered by the sub-datasets.

It is also worthwhile investigating whether the model can estimate 
the other plots (151, 185, 219, 252, and 269 N ha− 1) where ground truth 
data were not collected (Fig. 6). The model was trained based on the 
independent variables concluded from Section 3.3 by combining all 
available data with ground truth to estimate the SPAD readings for areas 
without the data. Fig. 6 illustrates four polynomial regression lines with 
a degree of 2 based on combining the collected and predicted leaf 
chlorophyll content from the ε-SVR. Through visual observation, the 
predicted values follow the pattern of the ground truth, with low SPAD 
readings at growth stage V12 and higher readings than others at V9. By 
following the procedure outlined in Section 2.6, the inclusion of pre
dicted values did not alter the polynomial regression model. Conse
quently, the r ≥ 0.9999 between the predicted value from models across 
all growth stages demonstrates the stability and accuracy of the model in 
predicting performance on unseen data.

3.6. Future study

Leaf chlorophyll content is an important indicator of crop health [1], 
which has been assessed using UAV-based remote sensing and proximal 
sensing technologies. However, few studies have focused on the multiple 
vegetative stages [26,31]. Monitoring leaf chlorophyll content during 
the vegetative stages can help to make decisions on water and fertilizer 
management prior to reproductive stages, ultimately influencing yield 
and grain quality. In this study, a more comprehensive feature extrac
tion and selection strategy were used to estimate leaf chlorophyll con
tent. Instead of relying on the averages of image-derived features, a 
number of statistics were used to capture the distributions and vari
ability of each image feature. A more refined and automated dimen
sionality reduction and improved model accuracy were achieved using 
the SCVFS method. In addition, this study also indicates that integrating 
environmental parameters (i.e., soil ECa) with UAV multispectral im
agery data can improve the estimation accuracy of corn leaf chlorophyll 
content.

Machine learning models with limited sample sizes are at a higher 
risk of experiencing statistical artifacts (e.g., sampling bias, spurious 
correlation), leading to suspicious results [66]. To mitigate the risk of 
sampling bias due to limited size of data, the study employed the 100 
times MCCV method to obtain more accurate results. However, this 
approach requires extensively higher computing time and resources. 
Future research should compare the result obtained from different 
feature selection methods such as, “recursive feature elimination” (REF), 
“SHapley Additive exPlanations” (SHAP), and “permutation feature 
importance”, to obtain more accurate understanding of the feature 
importance.

This study had a minimal number of ground samples. Moreover, the 
machine learning model was only based on one hybrid and one site year 
of data. This means the model needs to be improved for its universality 
and robustness. Therefore, future studies should include more widely 
cultivated hybrids and collect data from different fields with more 
environmental variations.

This study focused on aerial multispectral imaging, which may not 
provide enough information due to low spectral resolution and weak 
band continuity. In contrast to other sensors, hyperspectral sensors 
capture critical spectral information essential for assessing the physio
logical parameters of crops. This capability allows for a more detailed 
analysis of specific spectral signatures generated by the absorption and 
reflection of solar radiation by leaf chlorophyll. However, there is a lack 
of research on the benefits of including SWIR (900 nm to 2500 nm) data 
in real production scenarios, which could potentially enhance the 
model’s performance by providing more information. Future studies 
should explore the role of SWIR in improving the accuracy of leaf 
chlorophyll estimation to gain valuable insights into crop physiology 
and the practical application of N management.

Fig. 5. R2 of SCVFS-ε-SVR performance on training and testing dataset by 
considering the mean value of each vegetation index only with canopy coverage 
and image contrast.

Table 5 
Result of how well the observed data corresponds to the ε-SVR.

Vegetation stages R2 DAN (days)2

V8 0.94 20
V9 0.95 27
V11 0.92 34
V12 0.94 40
All1 0.90 N/A

1 V8 + V9 + V11+ V12. 2: Days After Nitrogen Application*:

Fig. 6. The polynomial regression (degree = 2) fitted to the combination of 
predicted SPAD-readings from ε-SVR and ground truth at four growth stages. 
The dots show the predicted values and triangled shapes show the true values.
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4. Conclusion

The study compared different machine learning methods in pre
dicting corn leaf chlorophyll content using aerial imagery and soil ECa 
data. Feature extraction techniques that consider a wider range of 
descriptive statistics were found to improve prediction accuracy. The 
ε-SVR model with SCVFS feature selection performed the best, out
performing RF, PLSR, and Elastic-Net with an R² of 0.87, MAE of 1.80, 
and RMSE of 2.26. The model’s performance remained stable across 
different vegetation growth stages. However, the study was limited by a 
small dataset, so further investigation with larger datasets is needed. 
Combining UAV imagery with environmental data can help accurately 
and continuously monitor the chlorophyll content of leaves during crop 
growth stages, helping to identify crop health issues early, and allowing 
for timely intervention and preventing loss of profitability.
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